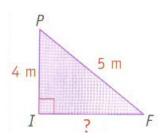
I - <u>Le Théorème de Pythagore.</u>

Théorème :

Si un triangle est rectangle, alors le carré de son hypoténuse est égal à la somme des carrés des deux autres côtés.

• Calculer la longueur d'un côté d'un triangle rectangle.



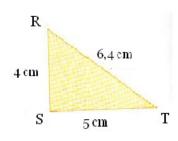
Le triangle IPF est un rectangle en I, d'après le théorème de Pythagore,

$$PF^2 = PI^2 + IF^2$$

 $5^2 = 4^2 + IF^2$
 $25 = 16 + IF^2$
 $IF^2 = 25 - 16$
 $IF^2 = 9$
 $IF = 3 m$ (car IF est une longueur)

La longueur du segment [IF] est 3 m.

• Montrer qu'un triangle n'est pas rectangle.



[RT] est le plus grand côté du triangle RST. On compare donc RT² et RS² + ST².

D'une part :	D'autre part :
$RT^2 = 6.4^2$	$RS^2 + ST^2 = 4^2 + 5^2$
$RT^2 = 40,96$	$RS^2 + ST^2 = 16 + 25$
	$RS^2 + ST^2 = 41$

On constate que : RT² ≠ RS² + ST² (or, si le triangle RST était rectangle,) L'égalité de Pythagore n'est pas vérifiée, (on aurait l'égalité.)

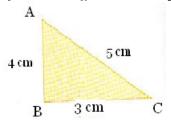
Donc le triangle RST n'est pas rectangle.

II - La réciproque du théorème de Pythagore.

Théorème:

Si dans un triangle, le carré du plus long côté est égal à la somme des carrés des deux autres côtés, alors ce triangle est rectangle.

• Montrer qu'un triangle est rectangle.



[AC] est le plus grand côté du triangle ABC. On compare donc AC^2 et $AB^2 + BC^2$.

D'une part : D'autre part :
$$AC^2 = 5^2$$
 $AB^2 + BC^2 = 4^2 + 3^2$ $AB^2 + BC^2 = 16 + 9$ $AB^2 + BC^2 = 25$

On constate que : $AC^2 = AB^2 + BC^2$ L'égalité de Pythagore est vérifiée, Donc le triangle ABC est rectangle en B.